Socrates 是一個由人工智能驅動的平台,旨在幫助用戶分析和提取 PDF 和 DOCX 文件中的信息。它提供了一種安全和私密的方式來總結文件、回答問題,並使用先進的人工智能模型獲得洞見。Socrates 提供免費和付費選項,滿足從日常文件分析到專業研究的各種用戶需求。
Socrates 是一個由人工智能驅動的平台,旨在幫助用戶分析和提取 PDF 和 DOCX 文件中的信息。它提供了一種安全和私密的方式來總結文件、回答問題,並使用先進的人工智能模型獲得洞見。Socrates 提供免費和付費選項,滿足從日常文件分析到專業研究的各種用戶需求。
Socrates 利用最先進的人工智能模型來總結和解釋 PDF 或 DOCX 文件。用戶可以提問並從各種文件中提取信息,包括書籍、論文、報告和文章。
該平台通過將文件保留在本地並且從不將其傳輸到外部服務器來確保用戶隱私。這一功能對於處理敏感或機密信息的人來說特別有價值。
用戶可以與 GPT 模型進行免費的私人對話,討論他們文件的內容,從而增強理解和分析能力。
Socrates 提供使用本地大型語言模型(LLMs)進行離線分析的選項,提供靈活性和額外的隱私保護。
用戶可以對高亮文本應用自定義指令,搜索文件中的特定頁面,並保存常用提示以提高工作效率。
Socrates 提供免費和付費計劃:
| 計劃 | 價格 | 功能 |
|---|---|---|
| 免費 | $0 | 無限制使用開源模型,有限制的網絡模型使用 |
| 付費 | $9+/月 | 高級網絡模型,GPT-4 模型,無限制的雲端文件處理 |
Socrates 自動利用 GPU 功能來提升性能:
Socrates 目前支持 PDF 和 DOCX 文件格式。
是的,Socrates 提供免費計劃,允許用戶探索產品的所有功能,包括無限制使用開源模型和有限制的網絡模型使用。
Socrates 將所有文件保留在用戶的計算機本地,確保它們永遠不會離開設備或被傳輸到外部服務器。
是的,Socrates 支持使用本地大型語言模型(LLMs)進行離線分析,無需互聯網連接即可提供功能。
對於 nVidia GPU 用戶,安裝 CUDA 將提供最快的本地 LLM 體驗。使用其他 GPU 的用戶將自動受益於基於 Vulkan 的加速。
0
0.00%
0.00
0.00
-
-
![](https://my.pcloud.com/#page=publink&linkType=share&shareId=VZbFVlZkZkZlZlZlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmVlVmV
如何讓你的 GPT 引擎提示更有效率 * 明確目標: 清楚說明你想要從 GPT 引擎中獲得什麼樣的結果。 * 提供足夠背景資訊: 給予 GPT 引擎足夠的上下文,讓它能夠更好地理解你的需求。 * 使用具體的語言: 避免使用模糊或含糊的詞語,盡量使用明確、精確的詞彙。 * 設定明確的格式要求: 如果需要特定的輸出格式,例如列表、段落或程式碼,請明確說明。 * 給予示例: 提供一些與你期望的結果相似的示例,可以幫助 GPT 引擎更好地理解你的意圖。 * 逐步調整: 如果第一次的結果不理想,可以嘗試調整提示語,例如添加更多細節或改變措辭。 * 善用提示工程技巧: 探索不同的提示語結構和技巧,例如提示 chaining 和 few-shot learning,以提升 GPT 引擎的表現。